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Abstract

Traffic congestion is a major challenge in modern urban settings. The industry-
wide development of autonomous and automated vehicles (AVs) motivates the
question of how can AVs contribute to congestion reduction. Past research has
shown that in small scale mixed traffic scenarios with both AVs and human-driven
vehicles, a small fraction of AVs executing a controlled multiagent driving policy
can mitigate congestion. In this paper, we scale up existing approaches and develop
new multiagent driving policies for AVs in scenarios with greater complexity. We
start by showing that a congestion metric used by past research is manipulable in
open road network scenarios where vehicles dynamically join and leave the road.
We then propose using a different metric that is robust to manipulation and reflects
open network traffic efficiency. Next, we propose a modular transfer learning
approach and use it to scale up the multiagent driving policy to a realistic simulated
scenario that is an order of magnitude larger than past scenarios (hundreds rather
than tens of vehicles). Our experimental study shows that the resulting policy
improves traffic efficiency over human-driven traffic in a large open network,
where existing approaches fail to do so. Another key advantage of our modular
transfer learning approach is that it avoids collecting samples from entire network,
which saves up to 80% of training and data collection time in our experiments.

1 Introduction

Traffic congestion is one of the leading causes of lost productivity and decreased standard of living
in urban settings [3]. Real world transportation systems suffer from inefficiency, partly due to the
tendency of self-interested drivers to maximize personal utility over social welfare, and the inherent
randomness in human driving [21]. The industry-wide development of autonomous and automated
vehicles (AVs) motivates the question of how could AVs contribute to congestion reduction. Since
AVs are controlled by predefined policies, unlike their human controlled counterparts they can
be made to act selflessly to increase the total social welfare. Through strategic driving, AVs can
influence the behavior of the human-driven vehicles in a network, and potentially mitigate congestion.
For instance, an AV may smoothly slow down when reaching a merge point in the road to allow
for another vehicle to merge, and force the human-controlled vehicles behind it to smoothly slow
down as well, thus preventing sharp decelerations and stops that could create and propagate back
congestion. Past research has shown that in human-driven traffic, a small fraction of AVs executing a
controlled multiagent driving policy can mitigate congestion in simplified simulated and real-world
scenarios [12, 18]. These AVs executed a learned or programmed driving policy, which controlled
their speed and possible lane-changes to mitigate a form of congestion called stop-and-go waves. The
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research focusing on simulated experiments used Berkeley’s Flow framework [20], which combines
the SUMO traffic simulator [7] with the RLlib deep reinforcement learning library [4]. The simulated
scenarios included cyclic road networks with a fixed set of vehicles, and more realistic non-cyclic
road networks with vehicles joining and leaving, referred to as closed road networks and open road
networks respectively. In this paper, we use the Flow framework to scale up existing approaches
and develop new multiagent policies for open road network scenarios with increased realism and
complexity.

Past simulated open road network scenarios were relatively small – a few hundreds of meters long,
with a few tens of vehicles. Their small size allowed for using a centralized multiagent driving
policy, which is limited in its ability to scale up since the observation and action spaces increase
exponentially with the number of AVs. Moreover, we observed that the metric used by past research
to show congestion improvement was manipulable by an RL agent in open road networks.

The contributions of this paper are as follows.

• We outline the drawbacks of the time-average sample-average speed metric(for simplicity, we will
use average-speed metric or average speed for this term in further discussion) in Section 4.1, and
show empirically in Section 6.1 that in open road networks, since incoming vehicle flows can be
moderated by the AVs, the average-speed metric used by past research is manipulable by an RL
agent.

• We propose to use instead the outflow congestion metric (rate of vehicles exiting the network),
highlight its advantages over the average-speed metric in Section 4.1. Specifically,we show that
this metric is robust to manipulation and reflects open network traffic efficiency.

• Using transfer reinforcement learning, we scale up a centralized multiagent policy to outperform
human-driven traffic on a realistic scenario that is an order of magnitude larger than past scenarios
(hundreds instead of tens of vehicles), on a real-world road network downloaded from Open
Street Maps [9], specifically road I-696 in Michigan, USA. To avoid an exponential increase in
complexity we transfer a learned centralized policy by operating it locally around a key location in
the larger network.

The rest of the paper is organized as follows. Section 2 surveys related work. Section 3 defines the
problem and the notation used. In Section 4 we compare evaluation metrics and outline our proposed
solution methods. Section 5 provides an empirical evaluation, the results of which are discussed in
Section 6. Section 7 concludes the paper and suggests future work.

2 Related Work

The recent industry-wide development of autonomous and automated vehicles (AVs) has led to a
surge of interest in harnessing AVs to reduce traffic congestion. On the theoretical side, there have
been efforts to formalize and analyze the foundations for AVs impacting traffic systems [19]. On the
applied side, large-scale traffic simulators have been adopted into a newly developed experimental
framework called Flow [20, 18], which we use in this paper. Using Flow, past research showed that
Reinforcement Learning (RL) [13] can learn an effective centralized multiagent driving policy, which
simultaneously senses and controls all AVs, and improves the average traffic speed over human-driven
traffic, implemented with accepted human driving models [16, 17]. However, we show that the
average-speed metric is manipulable by an RL agent and might not accurately reflect the networks’
traffic efficiency, and propose using an alternative metric.

Since using RL to learn controllers in realistic simulated or real-world setups could be impractically
slow, some research looked at using transfer learning [14] to expedite learning, by transferring from a
simulated ring to a simulated simple merge scenario [8], and from a simulated to a scaled city [5].
Our transfer learning approach is different in the modular way it reuses state representation, which
makes it more scalable. In the ring-to-merge transfer source and target scenario structure and size by
assuming a maximum number of AVs in the road network, duplicating the ring state representation
by this number, and using 0-padding if the actual number of AVs was smaller. In contrast, in our
transfer approach the policy does not directly control more AVs than it was trained for. Instead, it is
deployed only in a specific key location in the scenario, and its state representation remains the same
even though the scenario has a different geometry and larger number of participants. In addition,
the policy transferred from ring to merge did not surpass the performance of a policy trained from
scratch, while using our approach the transferred policy did. In the transfer learning from simulation
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Figure 1: An image of the I-696 highway and intersections, as displayed in SUMO. It is used in our
experiments as a representative large, open network.

to a scaled city, the source and target scenarios were the same and the state and action spaces were
identical, so the challenge was not to generalize to a different scenario, but instead to compensate
for the differences between the simulation and the real world. Using our approach, we were able to
scale to a simulated scenario with hundreds of vehicles, an order of magnitude larger than before,
specifically road I-696 in Michigan, displayed in Figure 1, infamous for its high congestion.

3 Domain Description and Notation

Problem definition. Given an open road network with mixed autonomy traffic consisting of both
human-driven vehicles and AVs, maximize the network’s traffic efficiency by controlling the AV
accelerations. Traffic Efficiency is measured in terms of outflow – the number of vehicles per hour
exiting the network. A solution to the congestion reduction problem is a multiagent driving policy
which maps the AVs’ states to acceleration actions.

Assumptions

• Agents (AVs) are altruistic and have a common goal of reducing system congestion
• Human drivers are self-interested and try to improve their own travel time
• Agents may be able to communicate

MDP Definition The congestion reduction problems we address in this paper can be modeled as a
discrete-time, finite-horizon Markov Decision Process (MDP) [10], which is a tuple M = (S,A, P,
R, ρ0, T ), where S is a state set, A an action set, P : S × A × S → R+ a transition probability
distribution, R : S × A → R a reward function, ρ0 : S → [0, 1] an initial state distribution, and T
the time horizon. A driving policy is a probability distribution πθ : S ×A → [0, 1] parameterized by
θ that stochastically maps states to driving actions.

In order to find a solution policy, we train an RL agent whose goal is to optimize a driving policy
to maximize the expected return Eτ

[∑T
t=0R (St, At)

]
, where τ := (S0, A0, S1, A1 . . . ) denotes a

trajectory, S0 ∼ ρ0, At ∼ πθ (·|St), St+1 ∼ P (·|St, At). In this paper, S is a set of AV observations,
A a set of acceleration actions, P is computed by the simulator, and R denotes the reward function.
We discuss several implementations for the reward function in Section 4.1

Simulation Environment We interface to the SUMO traffic simulator [7] using UC Berkeley’s
Flow software [6]. Flow provides OpenAI Gym [1] environments as wrappers around SUMO for
easy interaction with various RL algorithm implementations. The simulator takes in maps of road
structures, and simulates vehicle movements using accepted human driving models [16, 17] and
definitions of inflows, i.e., the location and rate of vehicles entering the network. The simulated
vehicles follow safety and acceleration limits enforced by the simulator. A vehicle’s leader and
follower are the closest vehicles in front and behind it (if exist). We note that the actual inflow rate
frequently differs from the requested one, for instance in cases where vehicles cannot enter the road
network due to congestion. This opens an option for a vehicle to moderate the inflow by slowing
down intentionally immediately after joining the network. The inability to guarantee exact inflows is
the reason that the average-speed-based metric is not a valid congestion measure in open networks,
as discussed in Section 4.1.
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4 Methodology

In this section we discuss our training methodology. We begin by describing the evaluation metrics
we use, and then describe in detail each of our training techniques.

4.1 Evaluation Metrics

In the Flow benchmark [18], the performance of the system is evaluated using time-average sample-
average speed over the episode, defined by Equation 1

Time-Average Sample-Average Speed ,

∑T
t=1

∑nt

i=1 vi,t/nt
T

(1)

where nt is a time-dependant variable representing the number of vehicles in the traffic network at
time t, vi,t is the instantaneous speed of vehicle i at time t, T is the episode length.

In an ideal scenario with constant inflows, there are multiple metrics that would all lead to the same
ordering of policies by quality according to a metric: maximizing average speed, maximizing network
outflow, and minimizing average time delay [2]. However, average speed and time delay are only
equivalent when inflows are identical as they are a function of the number of vehicles observed.
In open road networks, vehicles dynamically enter and exit the network. A good policy for open
networks should optimize network outflow by maximizing the number of vehicles that pass through
the network in a fixed time interval. However, the average-speed metric can be manipulated as it is
highly dependent on the inflows of the network. For instance, one way to manipulate the average-
speed metric is to block the incoming vehicles from entering the network until there is enough space
for incoming vehicles to accelerate to the maximum speed, thus maximizing the average-speed metric
by compromising inflows, thus reducing the network outflow. The average-speed metric is vulnerable
because of ignoring the resulting slow speeds of vehicles that haven’t entered the network. The
outflow metric on the other hand is robust to this form of manipulation since it does not have to
consider the velocities of the vehicles that have not entered the simulation yet. This reduction of
inflows and outflows as a means of improving average speed is demonstrated in Table 1 that compares
the results of using three reward functions: the original Flow reward, the average-speed-based, and
outflows on Simple Merge defined in Section 6.1. Therefore, we propose Outflow as a metric for
open networks as defined in Equation 2.

Outflow ,

∑T
t Ot
T

(2)

where T is the episode length and Ot represents the number of vehicles that leave the network during
timestep t. Since reducing the number of vehicles on the network will also reduce the number of
vehicles that can exit, the Outflows metric is more robust to the problems of inflow manipulation.

4.2 Centralized Solution Approach

We use a centralized approach similar to previous work [18, 8] as a starting point. In the centralized
approach, there is a centralized RL agent trained using the Proximal Policy Optimization (PPO)
algorithm [11], which controls a predefined fixed number of agents, NAV as illustrated in Figure 2.

PPO is a policy gradient RL algorithm that uses a critic for variance reduction. It learns a stochastic
policy that decides which action to take under a particular observed state of the environment. and the
policy is optimized using analytic gradient steps that are limited by KL divergence. Both actor and
critic are implemented as deep neural nets. RL vehicles are added to the list of controlled vehicles
according to a FIFO rule based on when they entered the network. Below we discuss the state space
and reward signal used for the centralized approach.

4.2.1 State

The state features of the centralized approach used in [8] and which we also use in our work, include
the following features:

1. Normalized speed of the AVi, vi
2. Normalized speed of the leader of AVi, vLi
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Figure 2: Centralized model, where local
states for vehicles are concatenated to form
one state. They are passed through a series
of hidden layers that result in a final output
vector of size NAV which is the number of
controlled AVs. Each of the values in this
vector is a target speed for the corresponding
AV.

Figure 3: Simple Merge network of length
700 m and inflow rate 2000 veh/hr with an on-
ramp of inflow rate 200 veh/h. Perturbations
from the on-merge lead to congestion [8]

3. Normalized headway between AVi and its leader, hLi
4. Normalized speed of the follower of AVi, vFi
5. Normalized headway between AVi and its follower, hFi

The speed values are normalized by the max possible speed Vmax, and the headway values are
normalized by a constant representing the maximum possible headway, hmax. The state vectors for
each controlled vehicle are concatenated into one observation vector, St. Suppose the maximum
number of AVs controlled by the centralized policy is NAV , then the state feature St is a vector of
length 5NAV , and is padded with zeros when the number of AVs in the network is smaller than NAV .
Formally, the state of AVi at time t, Si,t is defined in Equation 3, and the concatenated state of all the
AVs at time t, St is defined in Equation 4.

Si,t = [
vi,t
Vmax

,
vLi,t
Vmax

,
hLi,t
hmax

,
vFi,t
Vmax

,
hFi,t
hmax

] (3)

St = [S1, S2, ....SNAV
] (4)

4.2.2 Reward

There are several possible objectives to optimize for in open networks, such as maximizing network
outflow, or minimizing the maximum time delay of any vehicle to prevent starvation. In this paper,
we focus on maximizing the efficiency of a network in the form of average outflows. There are three
reward functions considered in our experiments.
Original Flow Reward [18] The reward in the Flow benchmark is composed of `2-norm distance to
a desired velocity and a small-headway penalization term. This reward encourages every vehicle to
travel as close as it can to the desired speed every time step while maintaining a large headway.

rt = max(‖Vd1n‖2 − ‖Vd − v‖2, 0)/‖Vd1n‖2 − α
∑
i∈AV

max(hmax − hi, 0) (5)

where v is a speed vector of all the vehicles in the network, Vd is the desired speed scalar, 1n is a 1
vector with n elements, where n is the total number of vehicles in the network, α is an adjustable
constant, hi is the headway between the ith AV and its leader, and hmax is a constant of expected
headway.
Average Speed Reward We define an instantaneous systematic average speed reward as

rt =

∑n
i=1 vi

nVmax
(6)

where n is the current number of all vehicles in the traffic network, and Vmax is the maximum speed
allowed on every lane. This reward is provided every time step. Summing it over the entire episode
and then dividing the sum by the episode’s horizon T gives the value of average speed (Equation 1)
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of the episode.
Outflow Reward The reward for instantaneous outflow is

rt = Ot (7)
where Ot is the number of vehicles that leave the observed area of the traffic network through any
lane during the tth time step. We note that the sum of this reward over the simulation will always
be proportional to the Outflow metric (Equation 2) by a factor of 1/T , assuming the simulation
occurs over a fixed period of time. Thus optimizing for this reward is equivalent to optimizing for the
Outflow metric.

4.3 Modular Transfer Learning Approach

We would like to scale up to the I-696 Merge scenario, which is much larger than scenarios used
in past research. As a result, the network can contain many more vehicles than networks used in
past work, and also more simulation time before congestion can occur. Learning under this scenario
can be problematic for the following three reasons. First, the state and action space exponentially
increases as the number of controlled vehicles increases. Specifically, the combined action space of
the system is, |A| = |Ai|NAV where |Ai| is the size of the action space of a single AV, and the size of
the combined state space is |S| = |Si|NAV where |Si| is the size of the state space of a single AV.
Second, since the centralized agent can only receive a global reward, and its actions can only have a
major impact near the merge point, the reward signal is extremely noisy from activity on the rest of
the network. Third, there is an extremely large delay from when the AVs take an action until they
receive a reward that’s related to the action’s impact on the outflows of the network since AVs don’t
exit the network long after they pass the merge. Therefore, we propose using transfer learning and a
modular approach to learn in this scenario.

4.3.1 Method

We create a window surrounding the junction so that the length of each merge component is compara-
ble to the smaller networks which we trained on. We then take a policy that was trained in a small
network, and apply it to the AVs inside the window, while outside of the window, AVs act like human
drivers. We refer to this approach as the Zero-Shot Transfer approach. and compare it to one trained
from scratch only within the window. We refer to this approach as Train from scratch (Window).

4.3.2 State and Reward

The states and rewards employed in the modular approach are the same as in the centralized method.

5 Empirical Evaluation

In this section we present our experimental setup for performing an empirical evaluation of methods
discussed above.

5.1 Traffic Scenario 1 - The Simple Merge

Our Simple Merge experiments are based off of the Flow benchmark [18]. The road network consists
of a main highway of length 600m before the merge and a merging lane of 200m. After merging, the
vehicles still need to travel an additional 100m. The junction controller is a "priority" controller where
both incoming edges have equal priority. This controller is the same as in previous benchmarks [18].
If two vehicles arrive at the junction at the same time with equal priority, the one with the lower speed
will yield to the vehicle with the higher speed. The main highway has an inflow of 2000 vehicles
per hour consisting of both humans and AVs. The merging lane has an inflow of 200 vehicles per
hour, made up entirely of human drivers. For both inflows, vehicles enter the traffic network with a
uniform time gap. In the mixed autonomy traffic flow, the RL vehicles are equally spaced among
human vehicles. In the centralized experiment the maximum number of controlled AVs, NAV , is 5.

5.2 Traffic Scenario 2 - The I-696 Merge

The I-696 network has the same shape as the real-world Interstate 696 highway in the US, which is a
much larger network than the simple merge. In our experiments we simplified the I-696 network to

6



have a single rather than multiple lanes, a main road, and a single merging road as highlighted in
Figure 1, we refer to this part of the network as the I-696 Merge. The I-696 Merge is much longer
than the simple merge, which makes it challenging for existing methods to learn effective driving
policies. The highway length before the merge is 3131m, the merging edge length is 1878.56m, and
after merging the vehicle will still need to travel 5077.7m. The defined traffic inflows are the same as
in the Simple Merge, where the highway inflow is 2000 vehicles/hour containing 10% AVs, and the
merge inflow is 200 vehicles/hour made up of human drivers entirely. At the junction in I-696 Merge,
the controller is the same as the that in the Simple Merge.

5.3 Human-Driven Vehicles

The movements of human driven vehicles on highways are modelled by the Intelligent Driver Model
(IDM) [15] that tries to keep a 1-second executed time headway among vehicles.

5.4 Autonomous Vehicles (AV)

Autonomous vehicles are only included in the main highway inflow with a 10% penetration rate and
equal spacing. There are at most 5 controlled AVs in Simple Merge and 100 in the I-696 Merge.

5.5 Training Details

All experiments are trained with the same set of parameters using the Proximate Policy Optimization
(PPO) algorithm [11]. Both tasks were trained in an episodic manner with a horizon of 2000 time
steps of length 0.5 seconds. All results are obtained from SUMO 1.6.0.More details on the training
hyper-parameters and MDP parameters are provided in the Appendix. To maintain the anonymity of
the authors we do not share our code base at this time, but plan to make it publicly available upon
acceptance.

6 Results

All results are obtained from running 100 independent evaluations, which vary in the inter-arrival
times of the vehicles entering the network. We’ve provided 3 selected videos of experiments with the
supplementary materials, videos of other experiments will be made available upon request.

6.1 Comparison of Reward Functions

In table 1 we test the simple merge scenario described in Section 5.1, and compare the three reward
functions described in Section 6.1 (along with human driven traffic as a baseline), with respect to the
three metrics of average speed, average outflow, and average inflow.

Table 1: Statistics of Reward Functions on Simple Merge

Reward Average Outflow (vehs/hr) Average Inflow (vehs/hr) Average Speed(m/s)
Human 1559.88±2.758 1726.68±2.611 7.27± 0.029

Original Flow Reward 1690.70±6.131 1746.76±6.339 15.80±0.102
Average Speed Reward 1521.72±3.067 1560.42±4.136 18.67±0.106

Outflow Reward 1801.80±7.362 1862.28±7.181 15.96±0.092
The results are obtained from 100 independent evaluations and we report the mean values of metric readings

accompanied with their 95% confidence interval bounds.

All reward functions - the original Flow reward, the average-speed reward, and the outflow reward -
improve the average speed over the human baseline. Using instantaneous average speed as a reward
results in the highest average speed in the network. However, we see that this improvement comes at
the cost of overall reduced network throughput, even when compared with the human baseline. The
Average Speed reward produced network inflows and outflows that were significantly lower than the
human baseline (an independent T-Test yields p-values < 0.001 for both metrics). By contrast, both
the Flow reward function and the outflow reward function are able to increase all 3 metrics, however
the Outflow reward function still outperforms the Flow reward. by a statistically significant margin in
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all 3 metrics (an independent T-Test yields p-values < 0.001 for both inflows and outflows, and a
p-value of 0.024 for average speed).

6.2 Modular Transfer Learning

In this section we compare the performance of three different approaches on the I-696 Merge, and
human-driven traffic. The approaches include:

• The Zero-Shot Transfer approach - our proposed modular transfer approach where a policy is
trained on Simple Merge and applied to a window in I-696 Merge without additional training.

• The Train from scratch (Window) approach - trained from scratch on a window in I-696 Merge,
and applied to the window.

• The Train From Scratch (NAV =100) - trained on the entire I-696 Merge with a maximal number
of controlled AV, NAV = 100, and applied to up to 100 AVs in I-696 Merge.

All three approaches were trained in two conditions: once with the Flow reward, and once with the
Outflow reward. Table 2 demonstrates the success of the Zero-Shot Transfer approach, in combination
with the Outflow reward, in terms of the Outflow metric. Training policies directly from scratch
reduces all metrics under both rewards. The original Flow reward never beats the human baseline in

Table 2: Transferring a policy from Simple Merge to I-696 Merge
Experiment Reward Average Outflow(vehs/hr) Average Inflow(vehs/hr) Average Speed(m/s)

Human None 934.20±6.270 2185.20±0 16.27±0.104

Train From Scratch (NAV =100) Outflow 437.26±7.134 759.60±5.328 15.11±0.161
Flow reward 816.12±6.135 1441.84±8.234 16.73±0.112

Train From Scratch (Window) Outflow 969.19±7.797 2133.40±8.263 16.31±0.118
Flow reward 925.27±6.196 2087.42±6.588 15.75±0.100

Zero-Shot Transfer (Window) Outflow 984.46±8.493 2065.39±7.119 16.19±0.123
Flow reward 854.46±12.52 1976.11±11.18 14.76± 0.165

The results are obtained from 100 independent evaluations and we report the mean values of metric readings
accompanied with their 95% confidence interval bounds.

terms of outflows, in any of the training approaches. The Train From Scratch in a window approach
integrated with the outflow reward can produce better-than-human performance but not as good as
the transferred policy (the difference between them is statistically significant with p-value=0.01 in an
independent T-Test).

Note that outflows in i696 are approximately half of those in Simple Merge due to the length of i696,
vehicles simply take a long time to reach the end of the simulated highway. Since the simulation on
I-696 is much slower than on Simple Merge, training on I-696 takes approximately 5 times longer
for the same number of iterations than training on Simple Merge.

7 Conclusion and Future Work

In this work we investigate reinforcement learning for traffic control in open networks. We demon-
strate that the previously used metric of average speed is an insufficient measurement for open network
traffic efficiency, since inflows can be moderated by the agents to achieve higher average speed. To
address this, we propose the outflows of the network as a more reliable metric for evaluating traffic
efficiency in open networks. We further show that by using the outflows as a reward function, our RL
algorithm can generate a driving policy which is superior to a policy generated by the state-of-the art
reward function in terms of both outflows, and average speed in a small open network.

After showing that existing methods cannot improve traffic efficiency in large open networks, we
develop a modular transfer learning approach which applies the policy learned in the small network
to a window surrounding a junction in a large network, specifically the I-696 highway network. Our
results indicate that the modular approach achieves better outflows both than human-driven traffic,
and than a policy trained from scratch on the full network. On top of the improved traffic efficiency,
a key advantage of the transfer learning approach is that it requires much less training time than a
policy trained on the entire network, at less than a fifth of the time in our setup.

An interesting avenue for expanding this research in future work is by scaling the modular approach
to more than one window.
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